
Al) AlA2 512 SCHEDULING SUPERCOMPUTERS I UI MINNESOTA UNIV MINNEAPOLIS I/
DEPT OF COMPUTER SCIENCE S SAHNI FEB 83 TR-83-3

',.' SI F i n F/G 12/1 N

IN7

E,13.

lii, II=4 I

1 1.25 1111 .4 1116

MICROCOPY RESOLUTION TEST CHART

NATION1AL UREAU OF SVANO A5-1963-5

It

Scheduling Supercomputers

C-)
C-0SatJ au

LA ehnclRpot8-

Ferur 18

II PV 3 91 1

Computer Science Department

Institute of Technology

136 Lind Hall

University of Minnesota

Minneapolis, Minnesota 55455

Scheduling Supercomputers

by

Sartaj Sahni

Technical Report 83-3

February 1983

Thu doeumew bmDI
jar -u jbm cmd ms* I
dMOUMb~h Is 2200WA.

Scheduling Supercomputers*

S art aj S ahni

University of Mnnesota

~Abtw
We develop good heuristics to schedule tasks on supcrcomputcrs. Supcrcom-
puters comprised of multiple pipelines as well as those comprised of asynchro-
nous multiple processors are considered. In addition, we consider the case
when different pipes or processors run at different speeds. 17

Keywords and Phrases
Supercomputers, pipelines, asynchronous processors, scheduling, heuristics.

Aecession For
NTIS GRA&I

DTIC TAB
Unaninounced4
J ~ficatlon4

Dist-ribution/ '
Availability Codes

jAvail and/or-

Dist Special

* his research was supported in part by the Office of Naval Research under con-
tract N00014-80-C-0650 and in part by the Microelectronics and Information Sdi-
cncs Center at the University of Minnesota.

1. Introduetion

A block diagram for a multiple pipeline vector supercomputer ([6]) is given in

Figure 1. Instruction fetches and decodes are carried out by the instruction

processing unit. Scalar instructions are sent to the scallT processor while vec-

tor instructions are sent to the vector controller. T"le vector controller receives
vector instructions from the instruction processing unit. These instructions are

set up on the vec or access controller, buffer and pipeline. Data is brought to

and from the pipelines by the vector access controller via the vector buffer. The

tvector buffer is essentialy a cache that is used to close the gap between memory

access speed and vector pipeline speed. The vector pipeline actually consists of

several (say m) independent pipelines. Each pipeline is capable of executing

every instruction (though during a single vector instruction the instruction exe-

cuted does not change) and the vector controller is capable of scheduling

several vector instructions simultaneously.

I srocsigra, Veto S~nt rcessr

controllerer

rPipe 21

7lgure 1 Block diagram of a multi pipeline vector supercomputer.

The pipelines constituting the vector pipeline may be identical or uniform.

Thus with pipeline I we may associate a speed sj, 1 i & m. When all the a s are

the same, we say that the pipelines are identical. The speed of a pipeline is

-4 0 .'- -

measured relative to that of a unit pipeli Tr which by definition has a speed of 1.

There arc three aspects to executing a vector task on a pipeline. First,
there is the time needed to set up the instruction ar.d get the f.rst operand pair

to the pipeline. This is the start up time. Next, there is the time needed to per-

form the instruction on an operand pair and bring in the next operand pair.

This is the ateltc tirm. Finally, there is the flush time. T-his is the time needed

to perform the instruction on the last operand pair and move the results out of
the pipeline. In this paper, we shall make the simplifying assumption that the

start up, latency, and flush times on a unit pipeline are the same for every vec-

tor instruction. Lct t o' dcnotc the sum of the start up and flush times and let t4
denote the latency time. The total time, t, needed (called the processong tima)

by a unit pipeline to run a vector instruction on a vector of length L is given by

the equation [86:

t = t0'+t (L-1)
= (to'-ti) + t&L)

-t o + tjL

where to = to' - t is called the overhead time.

For a typical unit pipeline, to will be much larger than ti. A pipeline with

speed s can in 6 time perform s*6 units of processing. Thus if a task needs t

units of processing on a unit pipeline, it can be completed in t/s time units on a

pipeline of speed s.

Lot us assume that a set of n tasks is to be scheduled on the m pipelines. In
general there will be a precedence relation associated with the task set. How-

ever, in this paper we shall consider only the case when this relation is null. I.e.,

the tasks are independent. Let 4 be the length of the vector task i and let t4 =

t 0 L4. We shall require that t > 0. A unit pipeline will require to tt time to

complete task i.

A schedule is an assignment of tasks (or portions of tasks) to time slots on

the pipelines such that:

L_ ,

-4-

1. No pipeline executes more than one task at any given time.

2. No task is being executed on more than one pipeline at any time.

3. All tasks are completed by the end of the schedule. Note that tasks may be

scheduled preemptively and that every tim.e a task i s started, the overhead

penalty of t o units of processing is incurred. Consequently, tasks (or por-

tions thereof) must not be scheduled for time slots of size less than t 0 / si

on processor i. The scheduled slot should actually be larger than this if any

useful work is to be performed.

The 1e"gth of a schedule is the earliest time by which all the pipelines have

completed the work assigned to them. In a tonpreemptve schedule, a task is

executed continuously from start to finish on the same pipeline. A task is said

to be scheduled preemptively if it is assigned to two or more noncontiguous time

slots on the same pipeline or is assigned for processing to two or more pipelines.

Throughout this paper, we assume that the number of tasks, n, to be scheduled

is no less than the number of pipelines, m, available.

The advantages to be reaped from preemptive schedules can be seen from a

simple example. Letn= 3, m=2,s 1 =s e = 1, to= 1.t = t e =t s =100. If no

preemptions are used, it takes the 2 pipelines 202 time units to complete the 3
tasks (Figure 2a). On the other hand, by using preemptions, the 3 tasks can be

completed in 152 time units (Figure 2b). The shaded area in each figure indi-

cates the overhead time of to.

We are interested. in this paper, in developing algorithms to schedule task

sets so as to minimize the schedule length. Before discussing work previously

done on this problem, we introduce another supercomputer model for which this

scheduling problem is of interest. Figure 3 gives the block diagram for a super-

computer comprised of m asynchronous and Independent processors. Each pro-

cessor starts with Its schedule of tasks (and subtasks) and repeatedly performs

the following steps:

1. Set up the next task (or subtask) to be performed. This will involve getting

the program and data for this task from the common memory and transfer-

ing it to the local memory.

L

1 101 22 2025

3 101 2 51 3 12L/2 V / A//1Z A////!

(a) No Preemptions (b) Preemptions

Figure 2 Example schedules

2. Execute the task for the specified duration.

.9. Flush the processor. This wculd involve moving the results of the compu-

tion back to the common memory.

Scheduler

P I P 2 '.
.

lgure 3 Block diagram of a supercomputer with asynchronous processors.

As in the case of a vector pipeline supercomputer, the m independent pro-

cessors may or may not be identical. In general, there will be a speed st and a

local mcmory sizc associatcd with proccssor i. Task i will require a total of t

units of processing (excluding overhead) on a unit processor (i e., a processor

whose speed is 1). In addition, task i will require U units of local memory to

run. Hence, this task (or portions of it) can be run only on those processors

that have at least U4 units of local memory. Once again, we are interested in

constructing schedules that have minimum length. We make the simplifying

assumption that the common memory is sufficiently interleaved that all proces-

sors can do their set up and flush simultaneously.

It is not too difficult to see that the problem of constructing minimal length

preemptive schedules for an m pipeline vector supercomputer is identical to

that of constructing such schedules for a supercomputer that has m asynchro-

nous processors all of which have the same amount of local memory. So, in

future discussion we shall explicitly refer only to the m asynchronous processor

case. All our results trivially carry over to the case of m pipelines.

It is well known that constructing minimum length prccmptivc schcdulcs is

NP-hard even when there are only 2 identical processors with equal memory size

([4]). When the start up and flush time is zero (i.e., to = 0), optimal schedules

may be constructed efficiently. McNaughton [10] has developed an O(n) algo-

rithm for the case when all processors have the same speed as well as the same

memory capacities. The algorithm developed by Kafura and Shen [5] for the

case when all processors have the same speed but have different memory sizes

oan be suily implemented to run in O(nlogm) time. Gonzalez and Sahni [3] have

devoloped an O(n + mlogm) algorithm for thc case of uniform processors having

the same memory size. The general problem of uniform processors with

different memory sizes has been considered by Lai and Sahni [7] and by Martel

[1], [2]. [8], [11]. and [12] are some other references on work related to the
scheduling of multi pipelined supercomputers.

As stated above, the problem we arc considcring in this paper (I.e.. con-
struct minimum length schedules) is NP-hard Hence, it is extremely unlikely

4--.. -

-'I-

that there exist efficient (i.e., polynomial time) algorithms that solve our prob-

lem. We shall therefore relax the requirement that the schedules constructed

bc minimal and only require that the schedules be constructed quickly and bc
"good".

Su and Hwang [12] have developed an efficient algorithm, SU, to schedule n

tasks on m identical processors with the same memory size. Their algorithm

runs in O(n) time and generates solutions that are quite good. Specifically, if we

let t., wu0 and ws'; be as below:

t. max I max j t1+to J, ,(tf+to)/mlt i

o= length of minimum length schedule

UsVj = length of schedule generated by the Su-Hwang algorithm

then,

'#sV t + (m-1)to/2
:9 w0 + (m-I)to/2

Using algorithm SU, Su and Hwang, further showed how a task set with tree
precedence could be scheduled such that the schedule length was no more than

I+ /(re+l) to W
2 t-o

where I is the height of the precedence tree.

In section 2 we shall show how McNaughton's algorithm for the case to = 0
can be adapted to get a fast algorithm, S, to schedule n independent tasks on m

idcntical proccssors with identical memory sizc such that:

WS& t , + (M-1) to

This new algorithm may be used in place of algorithm SU to schedule tree

- .2

-8-

precedence task systems in the algorithm of [12]. The resulting algorithm pro-

duces better schedules. In this section, we also show that the worst case bound

of t, + (rn-l)t0 /m cannot bc improved upon. In scction 3. we considcr idcnti-

cal processors with different memory size and finally, in section 4, we consider

the case of uniform processors with the same memory size.

.idelUd Proceors With The %ame Memory Sze

Mc Naughton's algorithm to construct a minimum length schedule for the case

to = 0 proceeds by first computing the schedule length f as below:

f =max jmax tj 1, t;tr r/

The n tasks are now scheduled, in any order, by first using up all of processor 1

(P1), then all of P2, then all of P3, etc. until all n tasks have been scheduled. If

when scheduling a task pn Pi we discover that it cannot complete by f, then the

remainder is assigned to P1+1 starting at 0.

When t0 P 0, we compute w$ as below:

,= max ma (to + tt,, ((to + t,) + (m-1)tO)/m

A modified version of Me Naughton!u algorithm is used to obtain a schedule

of length at most ws. The tasks are scheduled using algorithm S of Figure 4.

Note that it is possible for algorithm S to generate schedules that are

shorter than wa by upto (m-1)to/m. Theorem 1 establishes that algorithm S

always succeeds in generating a valid schedule.

Thomn 1: Algorithm S always generates a schedule of length at most 'S.

Proof: We fir " observe' t there are three points in the algorithm where a task

might be sch%..v d. t Iitis scheduled at the point labeled 1, it's scheduling

satsfle criteria 1 and 2 tated earlier for valid schedules.

4 ',

-9-

procedure S

i :1 ; Itask numberi

1 1; jproccssor numbcrl

q:= m; last available processor

time-remaining := ws; iremaining time on processor jj

fori:= I tondo

If to + 4 ! timeremaining

thenbegin
1: Schedule task i on processor j for t o + t time

beginning at time wS - time-remaining;

timc-rcmaining := timc-rcmaining - t 0 - t.:

If time.xemaining g to

then be in
2: j:=j+1;

time-remaining := ws;
end.

end

elme begin
it Ws - to - t,<to

then begin

3: Schedule task i on processor q from 0 to to + t;

4: q:= q- 1;

end
else begin
5: Schedule task i on processor j from wus - inw-renmning

to w and on processor J+1 from 0 to 2t 0 + tt - time.remaining;

timc.romaining := ws + tivuLa..rmainn - 2t0 - ti;

J := j+1;

endL lof SI

Flgure 4 Algorithm to schedule identical processors.

If task i is scheduled at point 3:. thcn to + t+ 'i s by deflnition of ws. Again,

the scheduling of task I is done in a valid way without increasing the schedule

L.-

-10-

length beyond ws.

Point 5: is thc only placc whcrc a task may be schcducd with a prccmption.

We must show that the scheduling of the two subta~ks that task i is di-. ded ino

does not overlap. The sum of the task times for the t.,ro subtasks 4s 2!, + t .

This quantity cannot exceed ws because if it did, then us- to - t4 < to and task

i will be scheduled at point 3:. Hence, the two subtasks of task i do not overlap.

Finally, we need to show that by the time j exceeds q, all tasks have been

scheduled. If this is not the case, then the schedule generated either uses more
than m proccessors or has assigned more that one task for processing in the

same time slot on some of the processors. Let i' be the first value of i when an

attempt is made to schedule a task on a processor that has already been used

(this processor would have been used earlier by 3:) or on a processor with index

j, j > m. Suppose that in the scheduling of the previous i'-i tasks, j had been

incremented k, times at 2: and q had been decremented k2 tLmes at 4:. Tis

means that on k = k, + k 2 processors there are no premptions.

-1

The total capacity utilized is , (to + t4) + pto, where, p is the number of
1

preemptions introduced. Since, ws> &to + it) + (in.-l)to/m, the idle capa-

city on all m processors together must be at least

b o + t) + (Mn-P-)t 0 (Mr-p)to + 4,.

If j = q when i = i', then time-remaining on processor j is less than to + tC

and the remaining processors have at most to idle time each. In fact, the total

Idle time on the remaining processors is no more than kt0 . Hence the total idle

time on the m processors is less than Id0 + to + tt.. However, the number of

preemptions In this case is m-k-1. So, the remaining capacity must be at least

(k+l)t0 + t., a contradiction.

If j > q when i = i', then the total idle time on the m processors is at most

kto. But, p=m-k and the available capacity must be at least kt0 + ft..

MWuaU-

- 11 -

Hence the algorithm always generates a valid schedule with length at most

Examining the definition of aic, we see that us -9 t, + (M-)t/m. Our

next theorem establishes that we cannot get a better bound on us.

Theorem 2- For every m, there exist task sets for which the minimum length

schedule is of length t, + (r-1)to/ m.

Proof: First consider the case m = 2, to = 1, tj = tp = ts = 5. One may readily

verify that if no preemptions are allowed, then there is no schedule with length

lcss than 12. If onc or morc prccmptions arc allowcd, thcn thcrc is no schcdulc

with length less than t, + to/2 = 9.5. This example generalizes to the case of m

processors. Simply consider m+1 tasks of length 5 and to = 1. -

We note that algorithm S is substantially simpler than the algorithm pro-

posed in [12]. In fact, it can be trivially implemented in hardware, thereby vir-

tually eliminating the scheduling overhead. For m = 2, the bound on us is the

same as that on the algorithm of [12]. For other values of m, our bound is

bcttcr by an additivc amount of (m-1)(1/2-1/m). Also, our algorithm may bc

substituted into the algorithm suggested in [12] for tree precedence tasks. The

resulting algorithm will have an improved performance. Since the minimum

schedule length, u o, is at least t,, we obtain the relation

Ws & 3 o + (m-1)t 0 /m.

& Idmticai Proessors With Different Memory Sze

Our heuristic algorithm for this case is based on the algorithm suggested by
Kafura and Shen [5]. As remarked earlier, this algorithm generates optimal

schedules when to = 0 and it runs in O(nlogm) time. Assume that 4-tJ4s,:.
4

1&l<m. Let B, = jjI A <usjk. tlci<m and B. = IJ uj:5 l. Let F = Bj,

1&iLm and let X = j . Define f as below:

f = max max td. max i X/0

-12-

The Kafura-Shen algorithm generates schedules of length f by scheduling

first all jobs in B1 , then all in B2 , and so on. When tasks from Bt are being con-

sidcrcd, proccssors 1 through i arc availablc. Thc schcduling is donc using

McMaughton's scheme. It is not too difficult to see that when to ; 0, this stra-

tegy can be adapted in the same way as we adapted McNaughton's algorithm in

section 2. The a to use now is given below:

ws = max J max tj + t0o, maxI(Y + (i-i)to)/i ?
S I

where Yt = (tj + to).

The correctness of the scheduling method may be established as in section

2.

4. Uniform Processors With Equal Memory Sze

Assume that the processors are ordered by speed. I.e., st +1 , 1:i<m. Let Tt

and St, 1!i!m be as defined below:

T= sum of the longest i task times + it 0 , 1!i<m.

T= sum of the n task times + nt o

St = S 1.l- m
Jul

When to = 0, a minimum length schedule can be obtained in O(n + mogm) time

[3]. The algorithm of [3] begins by computing the minimum schedule length. f,

using the formula:

f maxlt,/Ski1ib~m

-13-

Since the algorithm of [3] generates schedules that have no more than

2(m-1) preemptions, one might conjecture that in the face of overheads of to > 0
pcr prccmption, thc schcdulc lcngth nccd incrcasc to no morc than wvj as givcn

below:

wV maxl(Tt + 2(i-1)to)/ St

Establishing the validity of the above conjecture is quite a bit harder than

establishing the validity of the bound ws for identical processors. Like the algo-

rithm of [3] for the case when to = 0, our algorithm here will use 4 scheduling

rules. However, the condition for applying each and the rules themselves are

somewhat different. The n tasks shall be scheduled one-by-one. The schedule

for any given task will be obtained by using exactly one of the 4 rules.

Let us introduce some terminology first. Processor j has idle tima if there
is some time between 0 and wV during which no task has been assigned to it.

The interval [a,b] constitutes a block of idle time on processor j iff this processor

is idle throughout this interval. A block [a,b] of idle time on processor j is a
usable block iff (b-a)sj > to. A set of processors with nonoverlapping usable

blocks is called a usable processor system (UPS).

A three processor system with idle times is shown in Figure 5(a). The heavy
lines represent nonusable idle blocks while the light lines represent usable

blocks. Note that there is no overlap amongst the usable blocks. This

represents a UPS even though some usable blocks overlap with some nonusable

blocks. A UPS will be drawn as in Figure 5(b). In this figure. only the usable

blocks are shown. Observe that unlike the DPS of [3], a UPS is not required to
consist of a continuous block of idle time from 0 to u; p.

Let us assume that tl=!t& • •. tm-lati. jaem. Task i is the ith task to be

scheduled. We shall use k to denote the next task to be scheduled. Initially,

k=l. I(k) will denote the set of processors used in the scheduling of tasks 1, 2.

.. , k-1. Initially, (k) = 111. idle-time(k) denotes the total amount of processing

capacity available in the usable blocks of (k) (i.e., sum of the block length and
speed products). NP(k) is the number of preemptions in the schedule

Vm

.14-

P 2 I I

P3 4 (a) 6 9 10 12 16 1 4 6 9 10 12 16

(b)

igurc 5 AUPS

constructed for tasks 1, 2. k-1; H(k) is the number of usable blocks in 1(k);

and A(k) is the number of unusable idle blocks in (k). Note that each unusable

block represents atmost to units of processing.

When task k is to be scheduled, we determine which of conditions C1 - C4

(given below) holds and use the appropriate scheduling rule. Informally, these

four conditions are:

Cl: Task k can be scheduled on the usable blocks of 1(k) in such a way that no

usable blocks remain.

C2: There isnt enough usable capacity in I(k) to complete task k.

C3: The usable processing capacity in 1(k) is enough to complete task k. How-

ever, the usable capacity left following the scheduling of this task will

exceed t o .

C4: (k=m) or there is enough usable capacity in I(k) as well as on each of the

processors not in I(k) to complete task k.

These conditions are specified more formally later. They are tested for in

the order C4, Cl, C2, and C3. Once C4 holds, rule R4 takes over and schedules all

remaining tasks. For every k such that task k-i is scheduled using one of rules

Rl-R3, the following will be true:

1. I(k) IsaUPS.

cm..

-15-

2. l(kI- k

3. NP(k) + H(k) + A(k) - 1!9 2(k-1).

When k=1, NP(k)=O, H(k)=1, A(k)=O and we see that 1-3 above are true.

The tour scheduling rules together with their associated conditions are

given below.

RLde RI

ConitionC c: H(k)to + t k de-ime(k) - (H(k)+1)t0 + tb

Task k is scheduled in the H(k) usable blocks of l(k). This scheduling may leave

behind an unusable block of size upto to (Figure 8). Let j be the index of the

fastest processor not in I(k). Such a j must exist as tI(k = k < m. Define l(k+1)

to be 1(k) u ljj. The time on processor j from 0 to wzy constitutes the only usable

block of I(k+ 1). We see that NP(k+1) = NP(k) + H(k) - 1. H(k+ 1) = 1, and A(k+1)

!A(k) + 1. Hence,
NP(k+l) + H(k+1) + A(k+l) - 1! NP(k) + H(k) - 1 + 1 + A(k) + I - 1

NP(k) + H(k) + A(k) - 1 + 1

s2(k-1) + 1

<2k.

Also, I(k+1) is a UPS andhI(k+l - k+1.

Possible unusable block

ftgw. S Scheduling with rule Ri

Rdle Ia
C=dtin Ct Idletime(k) < H(k)t o + ti
At this time, there Isn't enough unable processing capacity In 1(k) to schedule

- 16-

task k. Let l(k) =1,i 2.. i. 2..{ !*,I, where j+1 it S = jil, If.. J S =

then j=k and idle-lime(k) a (TA; + 2(k-1)to) - (T-I + NP(k)to + A(k)to) >

tA+to+2(k-1)to+(H(k)-l)to-2(k-1)to = tt+H(k)to (rccall k < m when rulc R2

is used). This contradicts condition C2. So, S ; 0. Processors in S are intro-

duced into I by rule R3. From the way this rule selects a processor for inclusion

and the fact t1 I tg ;- - • • a tt, it follows that tt + to wrjsj+,.

Let I(k+1) = (k) u jj+1I. So, (k+1 = k+1. Index the usable blocks of 1(k) 1

through H(k). Let Tj denote the start of the ith usable block. Let Aj be the pro-

cessing capacity of the ith usable block (i.e., the product of block length and

proccssor spccd). Assume that thc usablc blocks have bccn indcxcd such that

-rt > rt+,, 1-ii<H(k) (Figure 7). Let -ro = wui. Find the least i, iO, such that one

of the following is true:

at) (i+i)to + 4,t m t + Ttjw (i+2)to + tt
p=1

b) t Ap + rtsl H< (i+)to +ti,

p=I

c) i H(k)

S T(k) "i+1 T 3 T 2 T1 TOMW

- I'k1

usable block
Possible unusable

block

1gwe 7 Scheduling with rule R2(a)

Clearly, such an I exists. The scheduling of task k depends on which of the above

comndtions holds for this L If more than one of the above hold for this least i,

then the first of them that holds determines the way to schedule task k.

-1?-

Came (a) holds

Schedule task k to completely use up the usable blocks 1 through I. Schedule

thc rcrnaindcr of this task on proccssor j+1 so as to flnish at rt (Figurc 7). Thc

remaining usable block (if any) on j+1 begins at ri and ends at w .. If i=0, then

there is no usable idle time left on processor j+1. If i>O, then it follows that the

processing capacity of j+1 from ;rt to wr is greater than to. Also, note that the

scheduling of task k might create an unusable idle block of capacity at most to

starting at 0 on j+l. It is not too difficult to see that NP(k+1) = NP(k) + i,

H(k+1) 9 H(k) - I + 1, and A(k+1) ic A(k) + 1. Hence,

NP(k+i) + H(k+l) + A(k+l) - 1

"NP(k) + i-+H(k) -i+1 +A(k) + 1-1

2 2(k-1) + 2

-2k.

We also note that I(k+1) is a UPS.

Case (b) holds
Now, 1>0 as Tosj+j ; tjb + to. So,

(1) 'A +'Tt-Isj+1 > ito + 4
pal

and

(2) t A + ;tsj+ < (L+l)to + tk

Also, observe that:
t h + "r'I~Se+l > (i+l)to + ti,

as otherwise case (a) occurs for -1.

This time we assign task k so as to use up the usable blocks 1 through i-i

(Figure 8). Let P be the end of the ith usable block and let s = A,/ (P-irt). Note

that it Is quite possible that < rt-1 (of course, it is not possible for P to be

greater than Tt_,). Let 8 = (ito + tt - ,I)/s+,). From (1) it is evident that 8
pal

< (.-.. If 6 2 - to/j+, then schedule the remainder of task k on J+1 from 0

to 6. If in addition, d < P. then designate the time from 6 to P on J+ unusable.

The only usable block on J+I begins at mauIP, 61 aid ends at tuw. We see that

.

- 18-

when task k Is completed in this way, NP(k+1) = NP(k) + i - 1, H(k+1) = H(k) + 1
-(i-1). and A(k+l) : A(k) + 1. So. NP(k+1) + H(k*1) + A(k+l) - 1 - 2(k-1) + 2 =

2k.

0 tH(k) Ti+1 Ti. i_1 3 T2 T 0

.. .. II/I IV/ 1/

.. 4t 4- I I I 1 7 1 7 7 7 7 7 7 7 71 //--possible

6 unusable
block

]Igure 8 Scheduling with rule R2(b)

If 6 < p - totsj+, then Psj+l > (i+i)to + tt - t . From (2). we know that
pal

(p-,r")s + l-up+ < (i+i)to + tt - tAp. So, there is a 7. t <- < such that
pui

?x+l + (P-Y)s = (4+1)t0 + t'% - t4. The remainder of task k is scheduled on
pal

J+l from 0 to y and in the usable block A from 7 to P (Figure 9). The idle time

on j+1 from y to wr forms a usable block. If the remaining idle capacity in Aj is

no more than to. then an unusable block is created here. So. NP(k+l) = NP(k) +

i. and H(k+1) + A(k+1) !6 H(k) + A(k) -1 + 2. Hence, NP(k+1) + H(k+1) + A(k+1)

-1 2k. I(k+l) is readily seen to be a UPS.

0 T H(k) T+ 1 T T 1 _ 3 T 2 Ti T0

[77T. .11 144

Possible unusable block

6

Mgure Scheduling with rule R2(b)

- 19-

Came (c) hold.

It is the case that '2A, +) > (H(k)+l)to + tk. Let v =
p =1

((H(Ic)+l)to + t -)Ap)/Sj+,. Schedule task k to use up the usable blocks of
p=1

(k) and onj+1 form 0 to 7 (Figure 10). It is clear that 7 < 'r(k). I(k.1) has only

one usable block. It is on processor j+1 from y to w #. NP(k+1) = NP(k) + H(k),

and A(k+1) = A(k). So, NP(k+1) + H(k+1) + A(k+1) - 1 < 2k.

TH(k) T3 T2 T1 T0

Pj+1L Y

]igu 10 Scheduling with rule R2(c)

Rule R3

Condition C3: idle.time(k) > (H(k)+1)t 0 + t,

Let q be the smallest value of r such that r A I(k) and th + to > 'uys,. Such a q

must exist as otherwise C4 also holds and is given priority over this rule. Let

;r, 6, 1!9i-H(k) be as in rule R2. Let I(k+i) = I(k) u jqj. We first see that I(k+l1

=k+1.

Find the largest i, i<H(k), for which one of the following true:

a(t44)t0 + t' gt + rts, , (t+2)to + tt
pal

b) + ris, < (i+ 1)ta + tk
pal

C) I= 0

low!

-20-

Clearly, such an i exists. The scheduling of task k depends on which of the above

conditions holds for this i. If more than one of the above hold for this largest i,

then thc first that holds dctcrmincs the way to schcdulc task k.

Case (a) holds
Schedule as in case (a) of Rule R2.

Cam (b) holds
We have the following inequalities:

T,+lsf + N > (i+2)to + t,,
pat

and

't S. + < (?i +i)tO + t't
pr1

Let P be the end of the usable block Aj+l. From the last inequality and the rela-

tion P !G it, it follows that.

Pa, + t V<(i+2)to + th
pal

Hence, there exists -', T~l <7 < P. such that

7s9 + (#-)s + t Ap = (i+2)to + tt

where s = 61+1/ (P-Tr). Task k is scheduled on processor q from 0 to 7, on the

usable block 61+1 from 7 to P. and on the whole of the usable blocks indexed 1
through I. The idle time on processor q from y to wui may or may not form a

usable block. Further, the capacity left on 61 may also be unusable. Regard-

les of the outcome for the remaining capacity on q and the i+lt h block, we have

NP(k+I) = NP(k) + i + 1. and H(k+1) + A(k+l) - H(k) + A(k) + 1 -. So. NP(k+l)
+ H(k~l) + A(k+l) - 1 -. 2k.

-es (a) hob

When H(k) = 1, (3) follows from C3. When H(k) > 1, (3) follows from (a) and (b)

with i1=.

(3) A1 + ulsa g 2tO + ti

L - -

-21-

Let P be the end of the interval A,. From the choice of q and the relation P
!9 w, we obtain:

(4) 2tc +tk >to + tb> w~s, :-psq

From (3) and (4), it follows that there is a y, < < < P such that:

7,S + ((-7)AI (S-) = 2to + tt

Schedule task k on processor q from 0 to -y and on A1 from y to P. The

rcmalning idle timc on A, and on q may or may not form usablc blocks. Rcgard-

less of this, we have NP(k+1) = NP(k) + 1, H(k+l) + A(k+l) !5 H(k) + A(k) + 1.

So, NP(k+1) + H(k+1) + A(k+1) - 1 : 2k.

Note Before moving on to rule R4, we should observe that the schedules gen-

erated by rules R2 and R3 may in fact assign task k for less than t o units of pro-

cessing on some processors. This creates no problem as the schedule can be

cleaned up in the end; eliminating these assignments. Each such elimination

rcduces thc numbcr of prccmptions by I and incrcascs thc valuc of A) by 1. So.

the sum NP0 + HO + AO - 1 is unchanged.

Rule R4

CoUdition C4: (k=m) or (C3 and to + tt ,: wvs,, for every p)l(k))

If k=m, then the sum of the processing capacities in the usable blocks of I(m) is

at least:

T, + 2(m-I)to - "'(to+tt) - (NP(m)+A(m))to

a n- '(t+ t) + (H (m) -1) t
1

This is just enough to schedule the remaining n-m+1 tasks on the H(m) usable

blocks of l(m) in the obvious way. At most H(m)-1 preemptions will be intro-

duced and we have the idle capacity to handle this many additional overheads.

If k<m. then let Q1, Q. Q... -, be the processors not in 1(k). Let qg denote

the speed of Q and assume that the processors have been ordered such that

qS!9 qf+t, 1!9i<m-k. We now schedule as many tasks as p isible using the

L

Vm

-22 -

procedure given in Figure 11. This scheduling procedure is quite similar to

McNaughton's [10]. We need to show that the preemptive scheduling done here

docs not causc an ovcrlap. Lct j bc thc indcx of thc first task that is schcdulcd

with an overlap. Let Q, and Q,+I be the processors on which it is scheduled. Let

A be the amount of time it is assigned to Q+,. So, Aq,+ 1 - lu -)q; < 2to + ti.

Also, there must be an r, k-r<min~mjj and a v, 1!v-p, such that 2t 0 + t, <

wvqq. If this is not the case, then to + t ;.. 2to + ti, k: <minjmrjj.

So, tasks k, k+1..... minim.jj-1 are scheduled to use up all of

Q1. Q2 Q= [m J- respectively. If j<m, then task j is to be scheduled by the

then clause of Figure 11 and no preemption occurs. If jam, then p>m-k and

task j is not schcdulcd by Figurc 11. So. wc may assumc that r and v as

described above exist. Now, since tj !9 t,. and q,+ 1 ;! qp ,, it must be that

2t 0 + tj < Aqp+1 + (wgw - A)q,. A contradiction. Hence, no task is scheduled with

overlap.

Let numpi be the total number of preemptions and idle slots of size at most

to that are introduced. We see that if no usable block remains on Qm-*, then

numpi < m-k. Otherwise, numpi ! m-k-1.

If j>n when this procedure terminates, then all tasks have been scheduled

and we need go no further. If jen. then it is necessary to schedule some tasks in

the usable blocks of l(k). If the idle capacity left on Q,-t is no more than to,

then the usable capacity in1(k) is at least Tm + 2(mn-1)to - (t, + to) - (NP(k)
t=1

+ A(k) + numpl)to e 2(tt + to) + 2(m-1)to - {2(k-1) + 1 -H(k) + n - kjte =
t-J

t,(tt + t 0) + (m-k+H(k)-1)to . This is enough capacity to process the remain-
i=$

Ing tasks in a straightforward way.

The final case to consider is when the idle capacity left on Q6-* exceeds to.

Let the idle time on Qn-* begin at 6 and go upto wg. The .capacity associated

with this time is less than to + fj. If there is no overlap between the idle time on

Q.-* and the usable blocks of 1(k), then we may schedule the remaining .tasks

on the H(k)+1 usable blocks in a straightforward way introducing at most H(k)

additional preemptions and idle slots of capacity at most to each. We may verify

that enough capacity exists for this. So, assume that there is some overlap. We

I~&m.."m. -'

- 23-

p;=l; j:=k; idle-time := ugg;

rcpcat
if t o + t, < idie-.Lime

then begin

schedule j on Qp;

idle-time := idle-time - t o - tj;

If idle-time! <to

then begin

p := p+1;

idlc.±imc :u yjq;

end;

end

else begin
if p = m-k then e'it;

schedule j on Qp upto w ' and on Q+ beginning

at 0. This requires exactly one preemption.

idle.time := wvqp+ 1 + idl -time - 2t o - tj;
p := p+1.

end;

J:= j+1;

until j>n or p>m-k;

rigure 11

have the situation of Figure 12. For convenience, we have numbered the blocks

loft to right in this figure. r is thc highcst index such that block i of 1(k) has

some overlap with the idle time on Q,-. Clearly, r~l. Let the capacity of the

ith block be A6 and let s = g,-*.

If + + (w v -8)s a rt o0 + ti, then schedule task j to use up all of QM-k and
I

as much of A1 4... 6 ..g as needed to complete task J. One may easily show

that there is enough capacity left to complete the remaining tasks by schedul-

ing them as for the case when kfm.

- a

*tl

-24-

T/ 1 2 r //

6 U

Figure 12

If Ap + A' + (wv-d)s > (r+)to + tj, where A' is the capacity available in

the rth block. from r,. upto 6, then again schedule task j to use up all of Qm_' all

of Aj, 1-i<r, and the appropriate needed fraction of Ar . Once again, we may ver-

ify that there is enough remaining capacity in J(k) to complete the remaining

tasks by scheduling them as we did for the case k=m.

Otherwise, from C4 and k<m, we see that there is an i2r for which

t4 + (wv--P)s ; (i+l)t0 + tj, (Pj is the end of the ith usable block). Find the

least i for which this is true. It follows that tap + (Wu-i)S < (i+l)t0 + tj.
Pul

Hence, there is a , ri < 7 "= A, such that task j can be completed by scheduling

it on all of A., ltzp<, on the ith usable block from r to y, and on Q, - from y to

wu. One may verify that the remaining capacity is enough to complete the

remaining tasks. Since all remaining usable blocks are nonoverlapping. the

remaining tasks are easily scheduled.

Comptexity

The scheduling algorithm described above can be Implemented in O(n+mlogm)

time. mlogm time is needed to order the processors by speed and n+mlogm

time is needed to obtain the m longest tasks in sorted order.

-25-

5. Conclusions

We have shown that it is possible to efficiently generate "good" schedules for

various systems of processors in the face of preemptive overheads. For the case

of identical processors with or without different memory size the schedules gen-

erated are within (m-1)t 0 /m of the optimal schedules. When processors have

different speeds but equal memory size the schedules generated by our algo-

rithm are within max2(i-1)t0/Sdl of the optimal schedule length. Our result
1st~m

for identical processors represents an improvement over the results obtained in

[12].

6. References

[I] J. Bruno and P. Downey, "Complexity of task sequencing with deadlie-s,

set-up times, and changeover costs," SIAM Computing, Nov. 1978, 3 ,3-44.

[2] J. Bruno, J,. Jones, and K. So, "Deterministic scheduling with pipelined pro-

cessors," IEEE Trans. On Computers, April 1980, 308-316.

[3] T.Gonzalez and S.Sahni, "Preemptive scheduling of uniform processor sys-

tems", JACM, Jan. 1978, 92-101.

[4] M. Garey and D. Johnson, Computers and intractabilitj, W.H. Freeman and

Co., 1979.

[5] D.Kafura and V.Shen. "Task scheduling on a multiprocessor system with

independent memories". SIAM Cbmputing, March 1977, 167-187.

[6] P.Kogge. Th architecture o1 peLwted cospudem, McGraw Hill Book Co.,

New York, 1981.

[7] T.Lai and S.Sahni, "Preemptive scheduling of uniform processors with

memory", Technical Report, University of Minnesota, 1982.

[8] H.Li "Scheduling trees in parallel/pipelined processing environments."

IEEE Trhwatm.. mn Chwputrx, Nov. 1977, 1101-1112.

[9] C.Martel, "Scheduling multiple processors with memory constraints,"
Proceedings 10th IMACS Congress, Aug. 1982.

L6-.

-26 -

[10] R.McNaughton, "Scheduling with deadlines and loss functions," Ma ag. Sci.,

Oct. 1959, 1-12.

[] C.Ramamoorthy, and H.Li "Sequencing control in multifunctional pipeline

systems", Sagarcre Computer Corference On Pnr=Utal .- ooessing", 1975,

79-89.

[121 S.Su and K.Hwang, "Multiple pipeline scheduling in vector supercomputers",

1982 International Conf erence On Parallel Processing, 226-234.

SECUAITY CLASSIFICATION OF THIS PAGE (When Dale Entered)

REPORT DOCUMENTATION PAGE REAO InSTRUCtIORS
I. REPORT NUMBER 2. OVTACCESjNNO RECIPIENT*S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT 6 PERIOD COVERED

Scheduling Supercomputers Technical Report February

S. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(*) s. CONTRACT OR GRANT NUMBER(.Q

Sartaj K. Sahni N00014-80-0650

9. PERFORMING ORGANIZATION NAME AND ACORESS 10. PROGRAM ELEMENT. PROjECT. TASK
AREA & WORK UNIT NUMUERSComputer Science Department

University of Minnesota
136 Lind Hall, 207 Church St. SE, Mpls, MN 554 5

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Department of the Navy February 1983
Office of Naval Research IS. NUMBER OF PAGES

Arlington, VA 22217
14. MONITORING AGENCY NA-E & ADDRESS(If dillfemt flos Controlling Office) IS. SECURITY CLASS. (of thl relrt)

UNCLASSIFIED
IS.. OSCLASSIFICATION/ DOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of this Repot)

17. DISTRIBUTION STATEMENT (of the abestat leed ta Atock 20, it diffltem itm Repect)

III. SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reveaoe *ide it necoe. olad Identify by block nain.w)

Supercomputers, pipelines, asynchronous processors, scheduling, heuristics.

20. ABSTRACT (Comimne " reverse @#do if noe.eaw mid Identifit by 4k ImAb..)

We develop good heuristics to schedule tasks on supercomputers. Supercom-
puterd comprised of multiple pipelines as well as those comprised as asyn-
chronous multiple processors are considered. In addition, we consider the
case when different pipes or processors run at different speeds.

DD , 1473 EoroN o 1 Nov as -$ oO,.,TE
S/N 0102-LP,014-6601

S-SEC:URITY C:LASSIICAQTION OP ?WilS PASS I e D ee.

I _ I i I I i I I

FIME

Irk,

I-,

